3.6.47 \(\int \frac {(a+b \log (c (d+\frac {e}{\sqrt {x}})))^p}{x^2} \, dx\) [547]

Optimal. Leaf size=175 \[ -\frac {2^{-p} e^{-\frac {2 a}{b}} \Gamma \left (1+p,-\frac {2 \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )\right )\right )}{b}\right ) \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )\right )\right )^p \left (-\frac {a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )\right )}{b}\right )^{-p}}{c^2 e^2}+\frac {2 d e^{-\frac {a}{b}} \Gamma \left (1+p,-\frac {a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )\right )}{b}\right ) \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )\right )\right )^p \left (-\frac {a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )\right )}{b}\right )^{-p}}{c e^2} \]

[Out]

-GAMMA(1+p,-2*(a+b*ln(c*(d+e/x^(1/2))))/b)*(a+b*ln(c*(d+e/x^(1/2))))^p/(2^p)/c^2/e^2/exp(2*a/b)/(((-a-b*ln(c*(
d+e/x^(1/2))))/b)^p)+2*d*GAMMA(1+p,(-a-b*ln(c*(d+e/x^(1/2))))/b)*(a+b*ln(c*(d+e/x^(1/2))))^p/c/e^2/exp(a/b)/((
(-a-b*ln(c*(d+e/x^(1/2))))/b)^p)

________________________________________________________________________________________

Rubi [A]
time = 0.16, antiderivative size = 175, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 7, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.318, Rules used = {2504, 2448, 2436, 2336, 2212, 2437, 2346} \begin {gather*} \frac {2 d e^{-\frac {a}{b}} \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )\right )\right )^p \left (-\frac {a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )\right )}{b}\right )^{-p} \text {Gamma}\left (p+1,-\frac {a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )\right )}{b}\right )}{c e^2}-\frac {2^{-p} e^{-\frac {2 a}{b}} \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )\right )\right )^p \left (-\frac {a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )\right )}{b}\right )^{-p} \text {Gamma}\left (p+1,-\frac {2 \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )\right )\right )}{b}\right )}{c^2 e^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*Log[c*(d + e/Sqrt[x])])^p/x^2,x]

[Out]

-((Gamma[1 + p, (-2*(a + b*Log[c*(d + e/Sqrt[x])]))/b]*(a + b*Log[c*(d + e/Sqrt[x])])^p)/(2^p*c^2*e^2*E^((2*a)
/b)*(-((a + b*Log[c*(d + e/Sqrt[x])])/b))^p)) + (2*d*Gamma[1 + p, -((a + b*Log[c*(d + e/Sqrt[x])])/b)]*(a + b*
Log[c*(d + e/Sqrt[x])])^p)/(c*e^2*E^(a/b)*(-((a + b*Log[c*(d + e/Sqrt[x])])/b))^p)

Rule 2212

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))*((c_.) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[(-F^(g*(e - c*(f/d))))*((c
+ d*x)^FracPart[m]/(d*((-f)*g*(Log[F]/d))^(IntPart[m] + 1)*((-f)*g*Log[F]*((c + d*x)/d))^FracPart[m]))*Gamma[m
 + 1, ((-f)*g*(Log[F]/d))*(c + d*x)], x] /; FreeQ[{F, c, d, e, f, g, m}, x] &&  !IntegerQ[m]

Rule 2336

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_), x_Symbol] :> Dist[1/(n*c^(1/n)), Subst[Int[E^(x/n)*(a + b*x)^p
, x], x, Log[c*x^n]], x] /; FreeQ[{a, b, c, p}, x] && IntegerQ[1/n]

Rule 2346

Int[((a_.) + Log[(c_.)*(x_)]*(b_.))^(p_)*(x_)^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[Int[E^((m + 1)*x)*(a
 + b*x)^p, x], x, Log[c*x]], x] /; FreeQ[{a, b, c, p}, x] && IntegerQ[m]

Rule 2436

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.), x_Symbol] :> Dist[1/e, Subst[Int[(a + b*Log[c*
x^n])^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, n, p}, x]

Rule 2437

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((f_) + (g_.)*(x_))^(q_.), x_Symbol] :> Dist[1/
e, Subst[Int[(f*(x/d))^q*(a + b*Log[c*x^n])^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p, q}, x]
 && EqQ[e*f - d*g, 0]

Rule 2448

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_)*((f_.) + (g_.)*(x_))^(q_.), x_Symbol] :> Int[Exp
andIntegrand[(f + g*x)^q*(a + b*Log[c*(d + e*x)^n])^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && NeQ[
e*f - d*g, 0] && IGtQ[q, 0]

Rule 2504

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*(x_)^(m_.), x_Symbol] :> Dist[1/n, Subst[I
nt[x^(Simplify[(m + 1)/n] - 1)*(a + b*Log[c*(d + e*x)^p])^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, e, m, n, p,
 q}, x] && IntegerQ[Simplify[(m + 1)/n]] && (GtQ[(m + 1)/n, 0] || IGtQ[q, 0]) &&  !(EqQ[q, 1] && ILtQ[n, 0] &&
 IGtQ[m, 0])

Rubi steps

\begin {align*} \int \frac {\left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )\right )\right )^p}{x^2} \, dx &=-\left (2 \text {Subst}\left (\int x (a+b \log (c (d+e x)))^p \, dx,x,\frac {1}{\sqrt {x}}\right )\right )\\ &=-\left (2 \text {Subst}\left (\int \left (-\frac {d (a+b \log (c (d+e x)))^p}{e}+\frac {(d+e x) (a+b \log (c (d+e x)))^p}{e}\right ) \, dx,x,\frac {1}{\sqrt {x}}\right )\right )\\ &=-\frac {2 \text {Subst}\left (\int (d+e x) (a+b \log (c (d+e x)))^p \, dx,x,\frac {1}{\sqrt {x}}\right )}{e}+\frac {(2 d) \text {Subst}\left (\int (a+b \log (c (d+e x)))^p \, dx,x,\frac {1}{\sqrt {x}}\right )}{e}\\ &=-\frac {2 \text {Subst}\left (\int x (a+b \log (c x))^p \, dx,x,d+\frac {e}{\sqrt {x}}\right )}{e^2}+\frac {(2 d) \text {Subst}\left (\int (a+b \log (c x))^p \, dx,x,d+\frac {e}{\sqrt {x}}\right )}{e^2}\\ &=-\frac {2 \text {Subst}\left (\int e^{2 x} (a+b x)^p \, dx,x,\log \left (c \left (d+\frac {e}{\sqrt {x}}\right )\right )\right )}{c^2 e^2}+\frac {(2 d) \text {Subst}\left (\int e^x (a+b x)^p \, dx,x,\log \left (c \left (d+\frac {e}{\sqrt {x}}\right )\right )\right )}{c e^2}\\ &=-\frac {2^{-p} e^{-\frac {2 a}{b}} \Gamma \left (1+p,-\frac {2 \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )\right )\right )}{b}\right ) \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )\right )\right )^p \left (-\frac {a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )\right )}{b}\right )^{-p}}{c^2 e^2}+\frac {2 d e^{-\frac {a}{b}} \Gamma \left (1+p,-\frac {a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )\right )}{b}\right ) \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )\right )\right )^p \left (-\frac {a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )\right )}{b}\right )^{-p}}{c e^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.28, size = 131, normalized size = 0.75 \begin {gather*} \frac {2^{-p} e^{-\frac {2 a}{b}} \left (-\Gamma \left (1+p,-\frac {2 \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )\right )\right )}{b}\right )+2^{1+p} c d e^{a/b} \Gamma \left (1+p,-\frac {a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )\right )}{b}\right )\right ) \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )\right )\right )^p \left (-\frac {a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )\right )}{b}\right )^{-p}}{c^2 e^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Log[c*(d + e/Sqrt[x])])^p/x^2,x]

[Out]

((-Gamma[1 + p, (-2*(a + b*Log[c*(d + e/Sqrt[x])]))/b] + 2^(1 + p)*c*d*E^(a/b)*Gamma[1 + p, -((a + b*Log[c*(d
+ e/Sqrt[x])])/b)])*(a + b*Log[c*(d + e/Sqrt[x])])^p)/(2^p*c^2*e^2*E^((2*a)/b)*(-((a + b*Log[c*(d + e/Sqrt[x])
])/b))^p)

________________________________________________________________________________________

Maple [F]
time = 0.00, size = 0, normalized size = 0.00 \[\int \frac {\left (a +b \ln \left (c \left (d +\frac {e}{\sqrt {x}}\right )\right )\right )^{p}}{x^{2}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*ln(c*(d+e/x^(1/2))))^p/x^2,x)

[Out]

int((a+b*ln(c*(d+e/x^(1/2))))^p/x^2,x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*log(c*(d+e/x^(1/2))))^p/x^2,x, algorithm="maxima")

[Out]

integrate((b*log(c*(d + e/sqrt(x))) + a)^p/x^2, x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*log(c*(d+e/x^(1/2))))^p/x^2,x, algorithm="fricas")

[Out]

integral((b*log((c*d*x + c*sqrt(x)*e)/x) + a)^p/x^2, x)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*ln(c*(d+e/x**(1/2))))**p/x**2,x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 8011 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*log(c*(d+e/x^(1/2))))^p/x^2,x, algorithm="giac")

[Out]

integrate((b*log(c*(d + e/sqrt(x))) + a)^p/x^2, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (a+b\,\ln \left (c\,\left (d+\frac {e}{\sqrt {x}}\right )\right )\right )}^p}{x^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*log(c*(d + e/x^(1/2))))^p/x^2,x)

[Out]

int((a + b*log(c*(d + e/x^(1/2))))^p/x^2, x)

________________________________________________________________________________________